
Advanced Topics

Instance Drawing

8 - 1

Instance Drawing

• A technique for doing drawing in response to a
user action

• Dynamic drawing such as dragging out a rectangle

• General case of drawing a transitory image over a
fixed or less transitory image

8 - 2

Instance Drawing

• Instance drawing works by drawing only on-
screen and restoring from off-screen:

Instance Drawing

PSsetinstance(YES) PSsetinstance(NO)

Off-screen Buffer

PSnewinstance()

Normal Drawing

8 - 3

Instance Drawing

• Instance Drawing requires the following steps:

• 1. Turn instance drawing on

• PSsetinstance(YES)

• Subsequent drawing will be on-screen

• 2. Erase previous instance drawing, if any

• PSnewinstance() or,

• PShideinstance(x,y,width,height) (preferred)

• Restores screen image from backing store

8 - 4

Instance Drawing

• 3. Draw transitory image and repeat loop

• 4. When done, restore background, turn instance
drawing off, and draw final result

• PSsetinstance(NO)

• PSnewinstance() or [self display]

8 - 5

Ex: from mouseDown: method in DrawView (SimpleDraw)

- mouseDown:(NXEvent *)e {
...
[self lockFocus]; //lock focus onto this view
while (looping){

...
PSnewinstance(); //erase previous instance
if(looping = (e->type==NX_MOUSEDRAGGED)){

/* Mouse is being dragged */
[scrollview autoscroll:e];
PSsetinstance(YES); //turn on instance drawing
[aShape drawShape]; //do the drawing
PSsetinstance(NO); //turn off instance drawing

}
else {

/* Mouse is up */
[self addShape:aShape];
[aShape drawShape];
[window flushWindow]; //restore background

}
}

[self unlockFocus];
...

8 - 6

Instance Drawing

• There are some caveats with Instance Drawing

• Drawing on-screen causes flicker

• Only safe for dynamic drawing in response to user-
action

• Works with retained windows but allocates yet
another buffer the size of the window

8 - 7

Instance Drawing

• Consider compositing from an off-screen window
as an alternative

• Use buffered windows

• Draw transitory image in an off-screen window

• Composite area to be affected into another off-
screen window

• Composite in transitory image and flush to screen

• Restore original image from off-screen window &
flush

• Repeat

8 - 8

Instance Drawing

• Trade-offs with Compositing

• No flicker

• May require less space if retained windows are
being used

8 - 9

Compositing

8 - 10

Compositing

• The Big Idea

• Compositing is a method for combining multiple bit-
per-pixel images together

• Typical use is to render a complicated image once
in a NXImage object or off-screen window, and use
compositing to move the image into an on-screen
window multiple times

• Relies on every pixel having both a data value which
expresses the color of the pixel and an alpha value
which expresses the transparency of the pixel

• “compositing is your friend”

8 - 11

Compositing

• Every pixel has a color and an opacity or coverage

• Color corresponds to its gray level: white, black or
some intermediate gray level

• Opacity or coverage specifies the degree the pixel
will hide a pixel underneath it. A pixel can be totally
opaque, totally transparent, or some intermediate
level

• The compositing operators use the color and
alpha values of respective pixels to combine them
to form a resulting image

• Following examples assume white pixels are
transparent; non-white pixels are opaque

8 - 12

Compositing Modes

Source Destination

Copy

Sover

Dover

8 - 13

Compositing Modes

Source Destination

Sin

Din

Sout

8 - 14

Compositing Modes

Source Destination

Dout

Satop

Datop

8 - 15

Compositing Modes

Source Destination

Xor

Clear

8 - 16

Compositing: Details

• When you set a gray level using the setgray
operator:

• You specify a gray level from 0.0 (black) to 1.0
(white)

• Postscript machinery maps the specified “user” gray
to a “device” gray

• User grays of 0.0, .333, .666, 1.0 are natural grays;
all others are synthetic based on the current screen,
spot and transfer functions

8 - 17

Compositing: Details

• A pixel’s alpha value ranges from 0.0 to 1.0

• 0.0 means totally transparent, 1.0 means totally
opaque, and intermediate values represent
intermediate values of opacity

• Alpha values of 0.0, .333, .666, 1.0 are represented
exactly

• All other values must be approximated by a similar
mechanism to that used to generate synthetic grays

8 - 18

Compositing: Details

• A pixel’s alpha value may be set:

• Opaque by default

• Explicitly by setAlpha operator

• Ink has a color (gray level) and a coverage (alpha)

• By default, currentalpha is 1.0 meaning ink is
opaque

• setalpha sets the currentalpha of the ink;
subsequent drawing will set the alpha of any
affected pixels to the value specified

8 - 19

Compositing: Details

• Example:

PSsetalpha(.33); //ink will be .33 opaque
PSfill();

• Use “clear” to get a totally transparent background:

id image;
NXRect r={0.,0.,100.,200.};
image = [[NXImage alloc]initSize:&r.size];
[image composite:NX_CLEAR fromRect:&r

toPoint:&r.origin;
...

8 - 20

Compositing Example

-makeAndDrawSource:(float)radius withGray:(float)gray
{
NXRect r;
NXSetRect(&r,0.0,0.0,2.*radius,2.*radius);
source = [[NXImage alloc] initSize:&r.size];
[source lockFocus];

[source composite:NX_CLEAR fromRect:&r
 toPoint:&r.origin];

PSarc(radius,radius,radius,0.,360.0);
PSsetgray(gray);
PSfill();

[source unlockFocus];
return self;

}

-drawSelf:(const NXRect *)r :(int)c
{
NXEraseRect(&bounds);
[self doSomeOtherDrawing];
[source composite:NX_SOVER toPoint:&bounds.origin];
return self;

}

8 - 21

Compositing: Notes for the curious

• Data and alpha values are pre-multiplied to avoid
the need for storing the alpha values separately
whenever:

• alpha is opaque or,

• alpha equals data

• Note: Compositing operations will be significantly
faster in these cases than if a separate alpha
channel is required

8 - 22

Compositing: Notes for the curious

• Highlighting is implemented using compositing

• You always composite from a image or window
into another or the same image or window

• Compositing ignores the scale and orientation of
the destination. This effectively means you cannot
rotate a composited image

8 - 23

Scrolling

8 - 24

Scrolling

• The ScrollView class provides an easy mechanism
for user-controlled scrolling

• The ScrollView owns several subviews

• vScroller
• hScroller
• contentView

8 - 25

Scrolling

scrollView

(ScrollView)

hScroller

(Scroller)

contentView

(ClipView)

hScroller

(Scroller)

docView

(View)

• The ScrollView’s contentView is an instance of a
ClipView, which in turn has a subview called the
docView, which is actually the view to be scrolled

8 - 26

Scrolling

• The docView is the subview over which to scroll
and the contentView is the visible portion of that
view at any point in time:

The different views owned by ScrollView

contentView

vScroller

hScroller

docView

8 - 27

Scrolling

• The ScrollView is responsible for providing &
managing user-controlled scrolling

• The ClipView is responsible for implementing the
basic scrolling functionality

• Scrolling is accomplished by translating the
contentView’s (ClipView’s) coordinate system
which has the effect of moving the docView
relative to the contentView’s frame relative to the
contentView’s frame

8 - 28

Scrolling: An example of how it works

• The docView is a subview of the contentView and
its frame is specified in the coordinate system of
the contentView

• For example:

/* assume code is from the initFrame:method of a
subclass of ScrollView */

id myDocView;
NXRect docFrame = {0.0,0.0,500.0,225.0};
myDocView = [[MyDocView alloc]

initFrame:&docFrame]
[self setDocView:myDocView];

8 - 29

Scrolling: An example of how it works

docView’s frame

Origin of contentView’s

coordinate system

• bounds of contentView = {0.0,0.0,200.0,225.0}

• frame of docView = {0.0,0.0,500.0,225.0}

8 - 30

Scrolling: An example of how it works

• When the user scrolls to the right, the coordinate
system of the contentView is shifted to the left...

docView’s frame

Origin of contentView’s

coordinate system

• After the scroll:

• bounds of contentView = {20.0,0.0,200.0,225.0}
• frame of docView = {0.0,0.0,500.0,225.0}

8 - 31

Scrolling: An example of how it works

• Since the frame of the docView is defined relative
to the coordinate system of the contentView, it
effectively shifts to the left relative to the frame of
the contentView

• Only the portion of the image contained in the
intersection of the contentView’s and docView’s
respective frames is now visible

8 - 32

Scrolling: An example of how it works

• The docView is only responsible for drawing the
newly exposed portion of itself

• The ClipView first copies the visible bits

• It then calculates the update rectangles for the
docView

• Finally it calls the docView’s display::: method
passing it the update rectangles

8 - 33

Scrolling: An example of how it works

docView’s frame

Origin of contentView’s

coordinate system

• When the docView’s drawSelf:: method is called by
ClipView, it is passed the minimum area it needs to
update

• The docView typically uses this information to
optimize its drawing

8 - 34

Scrolling

• When the user scrolls, ScrollView accomplishes
the scrolling by:

• Translating docView relative to contentView’s frame

• Scrolling the visible bits

• Sending a display::: message to docView to redraw
the rest

• Eventually docView’s drawSelf:: method is called to
redisplay the docView

• No modifications are necessary for drawSelf:: to
support scrolling

8 - 35

Scrolling

• The arguments to drawSelf:: can be used to
optimize scrolling performance

• First argument will be a pointer to an array of 1 or 3
update rectangles; 2nd argument gives number of
rectangles

• 1 rectangle if just horizontal or vertical scrolling, 3 if
combined

• Limit your drawing to the areas contained in the
update rect[0] if 1 rectangle, or rect[1] and rect[2] if 3
rectangles

• See ScrollingDrawView in SimpleDraw for an
example

8 - 36

Scrolling: Notes

• The contentView of a ScrollView is an instance of the
ClipView class, and it is actually the ClipView which
does all the work.

• Scrollers are activated whenever the appropriate extent
of the docView is greater than that of contentView

• ScrollView relies on docView setting
notifyAncestorWhenFrameChanged: and using
sizeTo:: to resize itself. Be sure to do these things.

• If you want your scrollView to resize you need to use
code similar to the code below:

[contentView setAutoResizeSubviews:YES];
[self setAutoSizing:

NX_HEIGHTSIZABLE|NX_WIDTHSIZABLE];
[[self docView] setAutoSizing:

NX_HEIGHTSIZABLE|NX_WIDTHSIZABLE];

8 - 37

Advanced Event Handling

8 - 38

Advanced Event Handling

• Rules for simple event handling

• Rely on the kit to dispatch events

• Pay attention to the view hierarchy

• Put controls which need to respond to key
equivalents inside panels

Use the text class or one of the kit classes which
uses the text class (TextViewer, Form, Cell) to handle
text editing

8 - 39

Advanced Event Handling

• But the kit provides ways to over-ride default event
dispatching

• Trapping mouseDowns within an upper level of the
view hierarchy

• Handling keyboard events directly

• Command key dispatching

• Modal windows and loops

• Accessing the event queue directly

8 - 40

View Hierarchy & mouseDown dispatching

• View hierarchy explicitly created by developer via
addSubview: method

A

B C

D E F G H

8 - 41

View Hierarchy & mouseDown dispatching

• Order of drawing is pre-order traversal of the tree

• subviews draw after and on top of their superviews

• But order of event-dispatch is a post-order
traversal of the tree

• Last view drawn gets the event

• Receiving view either handles event or passes it
back up the tree until it is handled

8 - 42

View Hierarchy & mouseDown dispatching

• View object performs “hit-testing” via hitTest:
method

• Checks if point is contained in view

• If yes, sends hitTest: message to each of its
subviews

• If no, returns nil

• Returns id of subview containing the point or id of
itself if no subview contains point

• Mousedowns can be “trapped” by a superview by
over-riding hitTest: method

8 - 43

View Hierarchy & mouseDown dispatching

• Over-ride hitTest: to intercept mouseDown

• hitTest: passed location of mouseDown in
superview’s coordinate system

• Use following code to determine if mouseDown is in
view:

- hitTest:(NXPoint *)aPt{
NXPoint pt= *aPt;
[self convertFromSuperview:&pt];
if(NXMouseInRect(&pt,&bounds,[self isFlipped]))

/* yes, now check subviews */
else

return nil; //not in this view
}

8 - 44

Directly accessing the event queue

An example modal loop for mouse tracking

- mouseDown:(NXEvent *)theEvent
{

BOOL shouldLoop = YES;
int oldMask;
NXPoint location;

oldMask = [window addToEventMask:
NX_LMOUSEDRAGGEDMASK];

... //do mousedown stuff

do{
location = theEvent->location;
[self convertPoint:&location fromView:nil];

inside = [self mouse:&location inRect:&bounds];

switch (theEvent->type) {
case NX_LMOUSEDRAGGED:

... //do mousedragged stuff
break;

8 - 45

Directly accessing the event queue

case NX_LMOUSEUP:
shouldLoop = NO;
... //do mouseup stuff
break;

default:
... //do default stuff

} /* switch */

} while (shouldLoop &&
 (theEvent = [NXApp getNextEvent:
 (NX_LMOUSEUPMASK | NX_LMOUSEDRAGGEDMASK |
 NX_KEYDOWNMASK | NX_KEYUPMASK)]));

[window setEventMask:oldMask];
return(self);

}

8 - 46

Directly accessing the event queue

• (NXEvent *)getNextEvent: (int)eventMask

• Method of Application object

• Removes matching event and returns

• Waits if none are present

• Cover for getEvent:waitFor:threshold: method of
application

8 - 47

Directly accessing the event queue

• (NXEvent *)peekNextEvent: (int)eventMask
 into:(NXEvent *)e

• Method of Application object

• Copies matching event into *e and returns

• Returns if none are present

• Cover for peekNextEvent:into:waitFor:threshold:
method of Application

• Default priority for getNextEvent and
peekNextEvent

• NX_BASETHRESHOLD = 1

8 - 48

Directly accessing the event queue

• (NXEvent *)currentEvent

• Method of Application Class

• Returns last event received by the Application Object

• Modal responders typically use a higher priority
using getNextEvent:waitFor:threshold:

• NX_MODALRESPTHRESHOLD = 10

• For example:

[NXApp getNextEvent:NX_MOUSEUP
waitFor:NX_FOREVER
threshold:NX_MODALRESPTHRESHOLD];

8 - 49

Directly accessing the event queue

• In addition to specifying a priority you can also
specify how long you want to wait for an event
matching the mask before returning

• Default for getEventEvent is NX_FOREVER, and 0
for peekNextEvent:into:

• If you do set an explicit interval, remember to check
for a null pointer on return from getNextEvent: !!!!

8 - 50

Keyboard Events

• keyDown events are dispatched to frontmost
window willing to accept keyDown events:

• Determined by window’s eventMask

• Default of a titled window is to accept keyDown
events

• Within window, keyDown dispatched to the
window’s firstResponder

8 - 51

firstResponder

• firstResponder is set by:

• Default to the window

• On previous mouseDown, receiving view responding
YES to acceptsFirstResponder: message

• Explicitly via makeFirstResponder: message

• Objects which are typically firstResponders

• Text

• TextField

8 - 52

firstResponder

• Every window has a firstResponder

• Responds to keyDown: messages when its window is
the keyWindow

• The firstResponder in the keyWindow is automatically
sent all action messages for whom no specific target
was specified

• By default, window is its own firstResponder

8 - 53

firstResponder

• 2 ways to become a firstResponder

• On mouseDown: window asks object if it wants to
become firstResponder via:

[myView acceptsFirstResponder];

Default method returns NO; over-ride default if you
want view to respond to keyboard messages:

- (BOOL)acceptsFirstResponder{return YES;}

• Explicitly declare object to be firstResponder

[window makeFirstResponder:self];
or

[myTextObject setSel:0:0];

8 - 54

firstResponder

• Being the firstResponder is only important if the
object needs to respond to keyboard events or
accept action messages without an explicit target

• Default is not to accept becoming a firstResponder

• Over-ride acceptsFirstResponder: method for
different behavior

• firstResponder is notified when another object is
about to become the new firstResponder

• Default is to give up firstResponder status

• Over-ride resignFirstResponder: method for different
behavior

8 - 55

firstResponder

• The firstResponder in the keyWindow is sent any
action messages for which no explicit target has
been specified

• Example: a multi-window text editor

• Have edit menu items send cut:,copy:,paste: but,
do not specify a target

• By default, action will get sent to the firstResponder
in the keyWindow which should be the active text
object

8 - 56

Command Keys

• Application object sends commandKey: message to
each of its windows until it finds a window willing to
perform the key equivalent command associated with
the command key

• Default commandKey: method ignores command keys:

-(BOOL) commandKey:(NXEvent *)tEvent
{return(NO);}

• Over-ride method if you want a view within window to
respond:

-(BOOL) commandKey:(NXEvent *)tEvent {
if([contentView performKeyEquivalent:tEvent])

return(YES);
else

return(NO);}

8 - 57

Command Keys

• By default, Panels will accept command Keys

• Windows which want to respond to
commandKeys must send a
performKeyEquivalent: message to each of its
subviews until one responds YES

• Default performKeyEquivalent: method simply passes
on message to each of its subviews

8 - 58

Command Keys

Example performKeyEquivalent: method

#import "PView.h"
#define KEYEQUIVALENT 'k'
@implementation PView

- (BOOL)acceptsFirstResponder {return YES;}
- (BOOL)performKeyEquivalent:(NXEvent *)e
{

if(e->data.key.charCode != KEYEQUIVALENT)
return([super performKeyEquivalent:e]);

else{[self doMouseAction];
 return YES;
}

}
- doMouseAction
{

NXAlert("mouse or key equivalent
 activated in view", "OK",0,0);

return self;
}

8 - 59

Command Keys

- mouseUp:(NXEvent *)e
{

NXPoint pt = e->location;
[self convertPoint:&pt fromView:nil];
if(NXMouseInRect(&pt,&bounds,

[self isFlipped]))
[self doMouseAction];

return self;
}
- drawSelf:(const NXRect *)r :(int) c
{

NXDrawRidge(&bounds);
return self;

}

8 - 60

Command Keys

• The bottomline: Buttons and other objects with key
equivalents will only respond to them if:

• They are contained within Panels or,

• Within windows whose commandKey: method has
been over-ridden

• When command-key is down in addition to another
key, alternate dispatching mechanism is used

8 - 61

Command Keys

• Sometimes you may want to dispatch a
command-key equivalent without having the
command key down. For example, keyboard
interface to flight simulator.

/* assume a view called InstrumentPanel which
implements the interface to the user */

/* In initFrame method of InstrumentPanel make it
the first responder for the window so it will get
keyDowns */
[aWin makeFirstResponder:self];

// Over-ride default acceptsFirstResponder
- (BOOL)acceptsFirstResponder{return YES;}

8 - 62

Command Keys

// Over-ride default keyDown method
- keydown:(NXEvent *)tE
{
/* ignore key repeats */
if(!tE->data.key.repeat){
if(tE->data.key.charCode=='+')

[self setThrottleByValue:
THROTTLEINCREMENT];

 else if(tE->data.key.charCode=='-')
[self setThrottleByValue:

-THROTTLEINCREMENT];
 else

/* dispatch to panel containing
controls */

[[viewPanel contentView]
performKeyEquivalent:tE];

}
return self;
}

8 - 63

Resources

/NextLibrary/Documentation/NextDev/NextStep/Concepts_v.1.0/
05_Drawing.rtfd

/NextLibrary/Documentation/NextDev/NextStep/Concepts_v.1.0/
05_Events.rtfd

/NextLibrary/Documentation/NextDev/NextStep/Concepts_v.1.0/
07_ProgDynam.rtfd
These chapters have much information on advanced drawing

techniques and event handling. Based on Release 1.0.

/NextDeveloper/Examples/VisibleView
This excellent demonstration of views includes examples of

mousetracking. This is used as a teaching aid at the NeXT

Developer Camp.

/NextDeveloper/Examples/CompositeLab
This is a good demonstration and example of the various

compositing modes and the use of NXImage.

8 - 64

Resources

/NextDeveloper/Examples/PaintLab
Both compositing and mousetracking are shown here. This is from

the NeXT Developer’s Camp.

/NextDeveloper/Examples/ScrollDoodScroll
Example of the use of scrollViews.

/PublicDeveloper/Examples/SimpleDraw
This example includes drawing, instance drawing, scrollViews, and

mousetracking. It is incomplete and needs some work, a good

project to learn on.

8 - 65

